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Abstract
Climate change and biological invasions are rapidly reshuffling species distribution, 
restructuring the biological communities of many ecosystems worldwide. Tracking 
these transformations in the marine environment is crucial, but our understanding 
of climate change effects and invasive species dynamics is often hampered by the 
practical challenge of surveying large geographical areas. Here, we focus on the 
Mediterranean Sea, a hot spot for climate change and biological invasions to investi‐
gate recent spatiotemporal changes in fish abundances and distribution. To this end, 
we accessed the local ecological knowledge (LEK) of small‐scale and recreational fish‐
ers, reconstructing the dynamics of fish perceived as “new” or increasing in different 
fishing areas. Over 500 fishers across 95 locations and nine different countries were 
interviewed, and semiquantitative information on yearly changes in species abun‐
dance was collected. Overall, 75 species were mentioned by the respondents, mostly 
warm‐adapted species of both native and exotic origin. Respondents belonging to the 
same biogeographic sectors described coherent spatial and temporal patterns, and 
gradients along latitudinal and longitudinal axes were revealed. This information pro‐
vides a more complete understanding of the shifting distribution of Mediterranean 
fishes and it also demonstrates that adequately structured LEK methodology might 
be applied successfully beyond the local scale, across national borders and jurisdic‐
tions. Acknowledging this potential through macroregional coordination could pave 
the way for future large‐scale aggregations of individual observations, increasing our 
potential for integrated monitoring and conservation planning at the regional or even 
global level. This might help local communities to better understand, manage, and 
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1  | INTRODUCTION

The redistribution of Earth's species is among the most evident con‐
sequences of global warming (Parmesan & Yohe, 2003; Poloczanska 
et al., 2016) and a critical aspect for the health of both natural eco‐
systems and human populations worldwide (Pecl et al., 2017). These 
changes are usually greater for marine environments, because of 
their high environmental connectivity (Burrows et al., 2011) and 
because of the pivotal role of water temperatures, which strongly 
influence growth, survival, and reproduction in marine animals 
(Crozier & Hutchings, 2014; Reusch, 2014). In fact, even apparently 
modest changes in water temperature might trigger a rapid cascade 
of multiple pressures over marine organisms. Some species, unable 
to cope with these environmental alterations, or benefit from them, 
may change their abundances accordingly. However, mobile marine 
organisms also have another option: they can move to new areas 
where they were formerly absent (Cheung et al., 2009; Fogarty, 
Burrows, Pecl, Robinson, & Poloczanska, 2017). These two dynamics 
are not mutually exclusive, as they can be considered as different be‐
havioral and demographic responses that might coexist in the same 
species or population.

Specifically, in the northern hemisphere, seawater warming has 
been associated with both the northward expansion of species and 
their increasing abundances (Fossheim et al., 2015; Perry, Low, Ellis, 
& Reynolds, 2005; Pörtner & Knust, 2007; Sabatés, Paloma, Lloret, 
& Raya, 2006). Yet, many studies provided evidence for the causal 
relationship between temperature, species distribution, and abun‐
dance (Cheung, Watson, & Pauly, 2013; Pinsky, Worm, Fogarty, 
Sarmiento, & Levin, 2013; Poloczanska et al., 2013) as well as their 
interplay with other global drivers, such as biological invasions, ma‐
rine overexploitation, and pollution (Stergiou, 2002; Walther et al., 
2009). These changes, which are taking place across many differ‐
ent taxa and through different regions of the globe, have significant 
implications for biodiversity, ecosystems, and society (McGeoch & 
Latombe, 2016) and are considered to be particularly apparent in the 
Mediterranean, a semi‐enclosed sea, which is warming faster than 
any other marine region in the world (Schroeder, Chiggiato, Bryden, 
Borghini, & Ben Ismail, 2016; Vargas‐Yáñez et al., 2008). In addition, 
maritime traffic, mariculture, aquarium trade and above all, entries 
through the Suez Canal (Edelist, Rilov, Golani, Carlton, & Spanier, 
2013; Parravicini, Azzurro, Kulbicki, & Belmaker, 2015) contribute 
to the introduction of a large number of nonindigenous species 

(hereafter referred as NIS) to this basin (Galil, Marchini, Occhipinti‐
Ambrogi, & Ojaveer, 2017; Golani et al., 2018; Zenetos et al., 2017), 
reshaping the structure of biological communities (Albouy et al., 
2013, 2015, 2014; Katsanevakis et al., 2017) and impacting biodi‐
versity and fishery resources (Edelist et al., 2013).

Despite the magnitude of these changes and their relevance for 
conservation and adaptation policy (Givan, Parravicini, Kulbicki, & 
Belmaker, 2017; Marras et al., 2015), observational studies are often 
fragmented in space (Elmendorf et al., 2015) and methodologically 
heterogeneous (Coll et al., 2010). This also applies to the northward 
expansions of warmwater species, a phenomenon that has been 
mostly described in the northwestern sectors of the Mediterranean 
basin, probably due to the uneven distribution of research ef‐
forts (Boero et al., 2008; Lejeusne, Chevaldonné, Pergent‐Martini, 
Boudouresque, & Pérez, 2010; Marbà, Jordà, Agustí, Girard, & 
Duarte, 2015; Sabatés, Martín, & Raya, 2012). This fragmentation, 
together with the lack of coherent depictions of change, hampers the 
availability of reliable information to stakeholders and decision‐mak‐
ers (Grafton, 2010; Pauly & Zeller, 2016). Indeed, in light of profound 
impacts that have already affected both people and the ecosystems 
they depend on, many national and transnational authorities and 
agencies are engaged in efforts to build adaptive capacity, seeking 
reliable information to enable people to anticipate and appropriately 
respond to the ongoing change (Coulthard, 2012). This explains the 
growing need of integrated monitoring and assessment systems to 
capture the ongoing transformations of marine ecosystems (includ‐
ing the effects of a changing climate) and to bring them into the pol‐
icy agendas (Creighton, Hobday, Lockwood, & Pecl, 2016). Certainly, 
our observational potential grew steadily during the last few years 
and increasing efforts are devoted to conceive global observation 
systems for up‐to‐date information on the state of biodiversity and 
the threats it faces (Tittensor et al., 2014). To achieve this, the use 
of standardized and cost‐effective procedures is needed to underpin 
a large‐scale observation strategy that can accommodate countries 
across a range of baseline knowledge levels and capabilities (Bélisle, 
Asselin, LeBlanc, & Gauthier, 2018; Latombe et al., 2017). These are 
key principles for collecting and integrating information from stake‐
holders across national boundaries. In this, fishers are a particularly 
interesting group of stakeholders, as they spend a considerable 
proportion of their lives in close contact with the marine environ‐
ment and they become familiar with local species. Therefore, their 
personal experience gained through individuals’ observations over 
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their lifetimes can provide precious complementary information 
about marine communities and be used to set effective monitoring 
practices. Yet, accessing this expert knowledge (hereafter referred 
as local ecological knowledge or LEK) is offering new opportunities 
to Mediterranean research (Azzurro, Bolognini et al., 2018; Azzurro, 
Moschella, & Maynou, 2011; Bastari, Beccacece, Ferretti, Micheli, 
& Cerrano, 2017; Coll et al., 2014; Damalas et al., 2015; Mavruk, 
Saygu, Bengil, Alan, & Azzurro, 2018), providing new opportunities 
to overcome practical and budgetary constraint, especially in poorly 
studied areas.

Here, we accessed the knowledge of Mediterranean fishers, to 
reconstruct changes in fish distribution and abundance, altogether 
with their related spatial and temporal dynamics. We did so by:

1.	 Compiling a dataset of species that were perceived as increas‐
ing or new by respondents (hereafter referred to as increasing 
species);

2.	 Using this multivariate information to explore the structure of per‐
ceived change across different subsectors of the Mediterranean 
Sea;

3.	 Testing for the effect of spatial gradients on the overall number of 
increasing species;

4.	 Exploring the spatiotemporal evolution of increasing species.

2  | MATERIALS AND METHODS

2.1 | Fishers’ interviews

Drawing on the methodology conceived within a pilot experience 
(Azzurro et al., 2011) and according to the procedure described by 
Garrabou, Bensoussan, and Azzurro (2018), we used a semistruc‐
tured questionnaire to reconstruct changes in distribution and abun‐
dance of Mediterranean fishes.

Knowledgeable small‐scale fishers with more than 10  years 
of experience were identified and selected by each local research 
team and individual face‐to‐face interviews were realized accord‐
ing to a standard protocol. Respondents were asked to mention 
the species that increased in abundance or were perceived as 
“new” (i.e., never observed before) in their fishing areas. For each 
of these species, qualitative ranking of historical abundances was 
expressed along a yearly timeline and according to six categories 
(0 = ABSENT; 1 = RARE [once in a year]; 2 = OCCASIONAL [some‐
times in a fishing period]; 3 = COMMON [regularly in a fishing pe‐
riod]; 4 = ABUNDANT [regularly in a fishing period and abundant]; 
5  = DOMINANT [always in a fishing period and with great abun‐
dances]). To facilitate the process of reconstructing historical abun‐
dances, line drawings on a preprinted diagramming table were used 
by the interviewer. Colored pictures of fish and fish identification 
manuals were used as visual aids for accurate species identification, 
checking respondent's knowledge on specific taxonomic charac‐
ters, whenever needed. The duration of a single interview ranged 
between 15 and 45 min. This protocol, which was initially tested 

in Italy with a restricted number of fishers (Azzurro et al., 2011), 
was applied here across nine different countries and 95 locations 
(Figure 1) distributed into seven different Mediterranean subsectors 
(sensu Di Sciara, 2016): Algero‐Provencal, Tyrrhenian, Adriatic, Strait 
of Sicily and Tunisian plateau, Ionian, North Aegean, and Levantin. 
This large spatial coverage was made possible through a collective 
and coordinated effort based on the engagement of an international 
team of researchers well connected with local fishery communities. 
The methodological transfer to the participating researchers was 
supported, from 2012 to 2016, by five training sessions carried out 
in Tunisia, Montenegro, Albania, Croatia, and Italy. Training included 
both theoretical lessons and joint field surveys made in collaboration 
with local fishers. Attendants were guided in performing standard‐
ized interviews and advised on how to reduce potential biases, such 
as the ones related to taxonomical identification and “memory re‐
call” bias (Coughlin, 1990). Interviews were realized between 2009 
and 2016 by local researchers in local languages (Albanian, Arabic, 
Croatian, Greek, Italian, Montenegrin, and Turkish). The LEK proto‐
col is currently applied in other Mediterranean countries, such as 
Libya, Spain, and France and adopted by five Mediterranean marine 
protected areas generating new data, which were not included in the 
present study.

2.2 | Sample characteristics

A total of 513 Mediterranean fishers with more than 10 years of 
experience were selected and successfully interviewed. Their age 
ranged from 28 to 87 years (mean ± SD: 48 ± 11). Their cumulative 
working experience accounted for a total of 15,030 years of obser‐
vations at sea. Overall, 59% of respondents were represented by 
professional fishers and 38% by recreational ones. Gillnets were 
the most common used gear among professionals (48%), followed 
by longlines (26%), traps (9%), purse (8%), and other gears (9%). 
Concerning recreational fishers, 64% of them were anglers and 
34% were spearfishers (Figure 1). The entire dataset is available 
from Azzurro, Sbragaglia et al., (2018), as a .csv spreadsheet.

2.3 | Statistical approach

Based on available literature (Azzurro, 2008; Golani et al., 2018) and 
according to their origin and spatial trend, we classified fish species 
spontaneously mentioned by the respondents in three different 
groups: north expanding species of indigenous origin (NES); other 
indigenous species (OIS); non‐indigenous species (NIS).

Based on the Bray–Curtis index, four different analyses of 
similarity were used to compare the groups of species mentioned 
by each respondent across the seven Mediterranean sectors: (a) 
we firstly used similarity percentages to see on which increas‐
ing species respondents agreed the most; (b) then, we adopted 
a nonmetric multidimensional scaling (nMDS) to represent the 
extent to which the increasing species cited from the different 
Mediterranean subsectors were similar; (c) we fit autosimilarity 
curves to see whether our interviews captured the entire amount 
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of increasing species in the different areas of the Mediterranean. 
Autosimilarity curves are adopted in community ecology to see if 
sample size is suitable to detect all the species within a community 
(Schneck & Melo, 2010). A curve is calculated by iteratively com‐
puting average resemblance values between randomly selected 
samples from a dataset. When resemblance attains an asymptote, 
sample size is deemed to represent a whole community. In this re‐
search, we regarded interviews as ecological samples. Therefore, 
autosimilarity curves told us whether our sampling in the various 
areas of the Mediterranean captured fisher's consensus about in‐
creasing species. We fit separate curves for NIS, NES, and OIS. 
Finally, to see the extent to which changes in fish communities 
were reflected in fisher's knowledge, (d) we modeled the effect 
of latitude and longitude over the total number of increasing spe‐
cies and over the number of increasing NES, NIS, and OIS, through 
generalized additive modeling (Guisan, Edwards, & Hastie, 2002; 
Hastie & Tibshirani, 1990; Wood, 2017a; Wood, Pya, & Säfken, 
2016). To account for heterogeneity in sampling effort, we used 
the total number of interviews collected at each location as an off‐
set. We chose a spline‐based penalized likelihood estimator, with 
a fixed number of knots (k  =  6), that was deemed large enough 
to avoid overfitting and Wald chi‐square statistics was adopted to 
test for the significance of smooth terms (Wood, 2013).

Spatiotemporal changes in fish abundances were analyzed 
through breakpoint analyses of the historical time series of per‐
ceived abundances of the two most frequently cited NES and NIS 

species. We determined the year at which each species‐specific 
time series indicated a significant change in the perceived abun‐
dance (breakpoint) by using a binary segmentation method assum‐
ing a Poisson distribution of the data (Killick & Eckley, 2014). To 
quantify the intensity of this break, we also determined its jump, 
defined as the difference between the perceived abundance be‐
fore and after the breakpoint. Since the breakpoint analysis was 
not sensitive in detecting the exact year of arrival of the “new” 
species, we also extracted from each species‐specific time series 
the year of perceived arrival, which corresponded to the year at 
which the perceived abundance changed from 0 (absence) to any 
of the other scores (i.e., 1–5). Then, we explored the effect of lat‐
itude and longitude over the year of break, the jump, and the year 
of arrival, through another set of GAM with a gaussian distribution 
of the error. We implemented six models for each species using 
latitude and longitude as smoothing terms for the three variables 
(year of break, jump, and year of arrival). In all cases, the total num‐
ber of interviews collected at each latitude and longitude was used 
as offset to account for different sampling efforts. Then, we used 
spline‐based penalized likelihood estimators and a number of fixed 
knots (n = 7) and F statistics was used to assess the significance of 
smooth terms (Wood, 2013).

Statistical analyses were run using the 3.4.3 version of R (https​:// 
www.R-proje​ct.org/). GAM modeling was carried out with the 
“mgcv” package (Wood, 2017b), breakpoint analysis with the pack‐
age “changepoint” (Killick & Eckley, 2014), similarity percentages, 

F I G U R E  1   Interview sites with reported distribution of the respondent's fishing experience(years) and employed fishing gears. ADR, 
Adriatic; AEG, North Aegean; ALP, Algero Provencal; ION, Ionian; LEV, Levantine; SIC-TUN, Strait of Sicily and Tunisa; TYR, Tyrrhenian

https://www.R-project.org/
https://www.R-project.org/
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autosimilarity curves, and nMDS with the package “vegan” (Oksanen 
et al., 2013).

3  | RESULTS

Mediterranean fishers, with their varying cultural and political set‐
tings, were proved a fertile ground where to explore LEK on changes 
in fish diversity and abundance. In most of the cases, respondents 
were interested about the research questions, glad to share infor‐
mation with the researchers, and generally pleased to be regarded 
as experts. What most participants pointed out in their narratives 
was the rapid and dramatic ecological change, and the reconstruc‐
tion provided here summarizes years of individual witnesses, which 
quantify our climate/invasive expectations. Fishers provided spe‐
cific temporal reconstructions in the form of storylines. Here is a 
typical example:

Interviewer: Do you know any species, which in‐
creased or appeared in your fishing area?

Fisher:  Oh, everything decreased, but we got some 
new guest in the last years and the cornetfish is one of 
them. I had never seen a cornetfish until early 2000s. 
I remember, it was 2013—the year when I had my sec‐
ond child—when I captured for the first time a cornet‐
fish. Then, the species remained occasional for a few 
years and in the last 5 years it increased in abundance 
becoming very common. Now we capture cornetfish 
every day.

This kind of ecological memories are often linked to an emotional di‐
mension (in this case a new species never seen before) and can be as‐
sociated with personal histories (in this case the birth of the second 
child). This helped tracing back‐specific temporal trends through the 
diagramming approach, transforming fisher's narratives in temporal 
series.

3.1 | Species perceived as increasing in 
abundance or new in respondent's fishing areas

Overall, 423 fishers (82%) told us that at least one species increased 
in abundance or appeared as new in their fishing area, for a total of 
886 observations across 75 taxa. These included a number of 13 NIS 
(21% of citations), 20 NES (64% of citations), and other 42 OIS (15% 
of citations). A complete list of species is available in Figure S1.

The invasive Lagocephalus sceleratus and Fistularia commersonii 
were the most cited NIS (31% and 34% of total observations, re‐
spectively, see Figure S1), while Pomatomus saltatrix and Sphyraena 
viridensis were the most cited NES (30% and 15% of total observa‐
tions, respectively, see Figure S1). Finally, Sparus aurata, Synodus 
saurus, and Thunnus thynnus were the most cited OIS (16%, 10%, 
and 9% of total observations, respectively, see Figure S1). Some 

of the autosimilarity curves, based on the Bray–Curtis similarity 
index, reached an asymptote (Figure 2a), indicating that respondents 
strongly agreed on the increase of a specific group of species. This 
was observed for NES in all the subsectors of the Mediterranean 
but the Levantine, and for OIS, like Sparus aurata, in the Tyrrhenian 
and the Adriatic Sea (see Table S1). Respondents belonging to the 
same geographical subsectors generally provided coherent informa‐
tion about NIS, NES, and OIS, when interviews were collected from 
the same geographical sector (e.g., the Tyrrhenian Sea). On the con‐
trary, significant differences can be highlighted for the group NIS, 
when distant areas are compared (e.g., Tyrrhenian vs. Levantine Sea; 
Figure 2b).

3.2 | Structure of perceived changes across areas

Nonmetric multidimensional scaling showed a good nonmetric 
(R2 = 0.95) and linear (R2 = 0.735) fit to the data in a two‐dimensional 
form. The plot (Figure 2b) revealed a general similarity across areas, 
such as the Tyrrhenian, the Algero‐Provencal, the Adriatic, and the 
Ionian Seas. Nevertheless, a variable level of separation can be high‐
lighted between the Adriatic and the Levantine, between the North 
Aegean and the Strait of Sicily, and between the Tyrrhenian and the 
Levantine subsectors, indicating significant changes in the pool of 
increasing species across distant biogeographical sectors.

Similarity percentages expressed through the Bray–Curtis index 
(Table S1) showed the species which explained the most observed 
similarity between responses. For example, respondents from the 
Adriatic and Tyrrhenian areas provided similar depictions of change, 
because they agreed over the increase of P. saltatrix as the most 
important species accounting for the observed intragroup simi‐
larity (Table S1). Intragroup similarity, in other subsectors like the 
Tyrrhenian, the North Aegean, or the Strait of Sicily, was explained 
by a wider group of species (Table S1). A complete table of the var‐
ious NIS, NES, and OIS cited as increasing in the various subsectors 
is available in Table S2.

3.3 | Spatial gradients in the overall number of 
increasing species

Latitude and longitude explained 33.5% of the deviance in the 
total number of species mentioned by the respondents (R2 = 0.54; 
UMBRE = 0.267; see also Table S3). The number of cited NIS showed 
a significant and linear decrease along a northward gradient, with 
higher number of NIS at lower latitudes (Figure 3). On the contrary, 
no effect of longitude was highlighted (p > 0.05).

Concerning OIS, these species did not show any clear, nor sig‐
nificant (p > 0.05), latitudinal pattern. On the contrary, their number 
significantly decreased from lower to higher longitudes (p < 0.001). 
Finally, the number of NES increased between 33 and 40 degrees of 
latitude, and remained stable at higher latitudes (Figure 3, Table S3). 
A significant (p < 0.001) smooth effect of longitude with constant 
values up to 23 degrees, followed by a steep drop was also observed 
(Figure 3, Table S3).
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F I G U R E  2   (a) Autosimilarity curves for the five geographical subsectors; when a curve reached a plateau, respondents in that 
geographical sector agreed over the increase of that specific group of species. (b) Similarities in terms of cited increasing species are 
illustrated by the nonmetric multidimensional scaling ordination of centroids of the n = 95 interview locations based on the Bray–Curtis 
measure of dissimilarity. Abbreviations: NES, North Expanding Species of indigenous origin; NIS, Non Indigenous Species; OIS, Other 
Indigenous Species
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3.4 | Temporal dynamics and their spatial variation

Breakpoint analysis indicated significant breaks for 561 time series 
(63%) across 45 taxa. Among them, NIS represented 27% of obser‐
vations (10 taxa in total), while NES represented 66% of observa‐
tions (18 taxa in total). Selecting the most cited NIS (i.e., L. sceleratus 
and F. commersonii) and the most cited NES (P. saltatrix and S. viri‐
densis; Figure 4), we traced back their spatiotemporal dynamics. The 
number of significant breakpoints and observed first occurrences 
were 57 and 57 for L. sceleratus; 46 and 58 for F. commersonii; 134 
and 123 for P. saltatrix; 48 and 49 for S. viridensis, respectively.

Concerning NIS, GAM indicated that at lower latitudes, the years 
of break and arrival started soon after 2000 for F. commersonii and 
positively increased toward 2010 at higher latitudes (Figure 5). The 
analysis of arrivals showed an even more consistent geographi‐
cal pattern. The strength of the F. commersonii breaks indicated a 
sudden arrival at lower latitudes than higher ones (Figure 5). The 
smoothing effect of longitude on F. commersonii breaks and arrivals 
did not show specific trends; however, the strength of the breaks 
was higher at higher longitudes (Figure 6). On the contrary, the 57 
breaks and arrivals of L. sceleratus were not modeled because they all 
occurred with a very strong jump (mean ± SD: 4.58 ± 0.75) between 

2003 and 2010 in a limited spatial range confined to the southeast‐
ern area of the Mediterranean Sea (latitude: 33.3–35.0; longitude: 
32.4–35.8).

Concerning NES, the smoothing effects of latitudes and longi‐
tudes on breaks and arrivals were weak or not significant for P. salta‐
trix (Figures 5 and 6, Table 1). No significant breaks and arrivals were 
present for latitudes lower than 38.1 and longitude higher than 23.3. 
On the contrary, GAM modeling indicated that in S. viridensis, there 
was a significant smooth effect of latitude and the years of break and 
arrival started around 1995 at 36 degrees of latitude and then pos‐
itively increased toward 2005 at higher latitudes (Figure 5). Despite 
no clear pattern related to longitude, we did not detect significant 
breakpoints at longitudes higher than 26.0.

4  | DISCUSSION

In this research, we used for the first time LEK to reconstruct distri‐
butional changes in species across an entire geographical region, the 
Mediterranean Sea. Our approach responds to the idea of collecting 
a minimum set of essential variables, which can be used to ensure ef‐
fective collaboration among countries and tangible information on a 

FIGURE 3 Generalized additive model smoothing effects of latitude and longitude on the total number of increasing species. Gray‐shaded 
area indicates standard errors above and below the estimates shown in solid blue lines. 
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specific ecological or societal phenomenon (Nativi et al., 2015). By 
gathering and combining the experience of Mediterranean fishers 
and everyday knowledge across different countries and varying so‐
cial settings (Papaconstantinou & Farrugio, 2000), we traced back 
the geographical expansion of warm‐adapted species of both native 
(NES) and exotic (NIS) origin, deepening our current understanding 
of the tropicalization of temperate marine ecosystems (e.g., Vergés 
et al., 2014).

Respondents, in almost all the subareas other than the Levantine, 
reported that an increase of NES and GAM modeling showed the 
effect of latitude and longitude on the total number of reported spe‐
cies, highlighting that the more evident manifestation of northward 
expansions in the northwestern sectors of the Mediterranean can 
be real and not only the result of a skewed concentration of research 
efforts in this area (Marbà et al., 2015). Northward spreads were 
extremely obvious for species such as the bluefish, P. saltatrix, which 
was reported to positively respond to seawater warming in both 
the northwestern Mediterranean (Sabatés et al., 2012) and in the 
Atlantic Ocean (Callihan, Takata, Woodland, & Secor, 2008). Similar 
to the bluefish, other native and exotic warm‐adapted species might 
have taken the advantage of changing environmental conditions 
(Lasram & Mouillot, 2009) and latitudinal and longitudinal gradients 
reflect their spatial dynamics. While native fishes comprised a large 
number of species mentioned by a large number of fishers, nonin‐
digenous taxa were entirely represented by Lessepsian fishes, enter‐
ing the Mediterranean from the Red Sea through the Suez Canal. 
Lessepsians are typically very common in the eastern Mediterranean 

sectors but may be rare or even absent in other geographical sec‐
tors, such as the eastern Adriatic, the North Aegean, and the most 
of the Northwestern Mediterranean Sea (Golani et al., 2018). Here, 
GAM highlighted a latitudinal and a longitudinal effect over the num‐
ber of reported NIS, and the change in the NIS pool across longitude 
reflects the geographical structure of the Lessepsian bioinvasion, 
whose importance progressively increases when we move to the 
east and to the south of the basin (Golani et al., 2018). Fisher's ob‐
servations also illustrated that the Lessepsian phenomenon, once 
confined to the eastern sectors of the Mediterranean, has rapidly 
progressed to the west, vanishing the boundaries of the so‐called 
“Lessepsian Province” (Por, 1990). This was particularly clear for the 
Sicily strait, which was historically considered as an insurmount‐
able barrier to the dispersion of Red Sea fishes and it is now colo‐
nized by species such as rabbitfishes (Siganus luridus) and cornetfish 
(F. commersonii).

While the picture provided by NES and NIS shows coherent 
responses over entire geographical subsectors, confirming the 
influence of large‐scale drivers, the increase of the remaining 
species (OIS) can be mostly attributed to local causes, or to the 
finding of rare/uncommon species perceived as “new” by the re‐
spondents. This conclusion is supported by the large number of 
OIS, by the widespread disagreement on their increase, and by 
the lack of any clear latitudinal effect in GAM. Nevertheless, we 
acknowledge that some OIS, like S. aurata, were cited by many re‐
spondents from distant locations thus suggesting the existence of 
a real increase in this species over large geographical areas. The 

F I G U R E  4  Reconstruction of historical abundances according to fisher's knowledge: two representative examples of “increasing” species 
are given, Lagocephalus sceleratus and Pomatomus saltatrix, in two different geographical sectors (Adriatic and Levantine). A more complete 
set of species is available in Figure S2
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increase of S. aurata all over the Mediterranean can be explained 
by its recent intensive and widespread mariculture and associated 
unintentional escapees (Dempster et al., 2018), which might act as 
inadvertent but continuous restocking of this species over large 
areas of the basin.

Spatial patterns are well illustrated by the nMDS (Figure 3) and 
the plotted distances of reported observations show that respon‐
dents from different subsectors of the Mediterranean might hold 
different experiences. For example, Levantine and Adriatic fishers 
did not overlap in terms of cited species, and this is primarily ex‐
plained by the great differences held by these sectors in terms of 
community composition.

4.1 | Temporal dynamics and their spatial variation

The breakpoint analysis identified critical changes in both spatial and 
temporal dynamics of cited species. For example, the arrival of F. com‐
mersonii was extremely sudden at lower latitudes around the year 2000 
and then positively increased toward 2010 with lower strength, matching 
the strength and rates of its invasion history, as reconstructed through 
published observations (Azzurro, Soto, Garofalo, & Maynou, 2013). The 

expansion of P. saltatrix was mostly reported from the northwest of the 
Mediterranean Sea, while any significant breaks and/or arrivals were re‐
corded in the southeast sectors of the Mediterranean, where the species 
historically occurs (Sabatés et al., 2012).

Overall, the first evidence on the northward expansion of warm‐
water species was provided in the 1990s (e.g., Bianchi, 2007; Bianchi 
et al., 2012; Francour, Boudouresque, Harmelin, Harmelin‐Vivien, & 
Quignard, 1994), while a clear increase in sea temperature and im‐
portant changes in the water circulation of the Mediterranean Sea are 
visible since the 1980s (Boero et al., 2008). The critical changes illus‐
trated by our temporal reconstructions and breakpoints confirm and 
describe the increase of warmwater species at higher latitudes. For 
example, the dynamics of the bluespotted cornetfish F. commersonii 
agrees with the onset of its Mediterranean invasion (in 2000), and 
most interestingly, the strength of the breaks (jumps) was particularly 
great at higher latitudes, mirroring the rapid demographical explo‐
sion of this species in the easternmost sectors of the Mediterranean 
(Golani et al., 2018). A similar pattern of rapid population explo‐
sions was reconstructed for the silver‐cheeked toadfish L. sceleratus, 
which showed very strong breaks in the easternmost sectors of the 
Mediterranean, since 2003, hence, immediately after its detection.

F I G U R E  5  Generalized additive model smoothing effects of latitude on the years of break, jump and year of arrival for the most common 
species perceived as in increase. Gray‐shaded area indicates standard errors above and below the estimates shown in solid blue lines
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4.2 | Strengths and weaknesses of a large‐scale 
LEK survey

The non‐structured approach of our interviews allowed each re‐
spondent to spontaneously mention “new” or increasing species 
in each fishing area, so each interview may be considered as an 
independent replicate in our design. The high degree of coher‐
ence among respondents from the same geographical subsec‐
tor improved the confidence in the fact that trends reflect real 
patterns in the environment, with promising outcomes for large‐
scale investigations. Indeed, the logic of focusing on a regional 
change is analogous to that for global or climate changes itself. As 
highlighted by (Parmesan & Yohe, 2003), surveying for large‐scale 
fingerprints does not require that any single species is driven by 
a large‐scale determinant with 100% certitude. Rather, it seeks 
some defined level of confidence in the whole signal. Also, the 
extent of our geographical scale makes our findings relatively ro‐
bust against cognitive biases, framing effects, and memory re‐
call issues, that are likely to affect detailed and punctual records 

in space and time, rather than overall, coarse, estimates (Vaske, 
2008). This also apply to other potential sources of variability, 
such as the attitude of respondents, their different fishing gears 
(Azzurro et al., 2011), and the limited access to particular depths 
or areas (e.g., Beaudreau & Levin, 2014). Certainly, the influence 
of factors such as climate change and fisheries on the observed 
dynamics was not specifically tested in this study. In this regard, 
we might note that only a restricted subset of Mediterranean 
NIS was mentioned, representing only the most recent invasions. 
Other invaders were not cited by the respondents, because they 
were not perceived as new or increasing in their fishing areas. 
This is particularly evident in the Levantine sectors, where sev‐
eral invasive fishes settled in historical times, attaining com‐
mercial relevance and declining afterward under the pressure 
of intense fishing (M. Bariche, pers. comm.). These potential 
interactions with fishery and other potential drivers could be a 
subject for future cross‐cultural investigations across the large 
spectrum of social, economical, and ecological conditions of the 
Mediterranean region.

F I G U R E  6  Generalized additive model smoothing effects of longitude on the years of break, jump and year of arrival for the most 
common species perceived as in increase. Gray‐shaded area indicates standard errors above and below the estimates shown in solid blue 
lines
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4.3 | Concluding remarks

The whole Mediterranean is rapidly changing its biotic identity and 
accessing the knowledge of local fishers provided us with an improved 
understanding of the recent spatiotemporal dynamics of species “on 
the move,” mainly represented here by warm‐adapted fishes expand‐
ing across the basin. The resulting picture helps to fully appreciate the 
regional dimension of species redistributions, which will leave “win‐
ners” and “losers” in their wake (Pecl et al., 2017). Merging local ef‐
forts together, we build practical bridges to deal with these complex 
and large‐scale transformations. To this regard, we must consider 
the inherent value of LEK on its own, and not only as sole ecologi‐
cal information. Indeed, individuals who inhabit sites of change might 
possess deeper readings of place and undisclosed capacities for inter‐
pretation (Mustonen, 2014) and adaptation (Berkes, Colding, & Folke, 
2000). Therefore, the valorization of their knowledge is expected to 
reinforce our potential for adaptive ecosystem‐based management, 
improving the operability of future actions in the real world (CIESM, 
2018). The importance of this interplay, between ecological and so‐
cial aspects, has been largely recognized by the scientific community 
(Allen, Fontaine, Pope, & Garmestani, 2011; Bennett et al., 2017; 
Berkes, 2004; McGeoch et al., 2016) and it is considered as a key in‐
gredient to support robust and effective conservation policies in the 
Mediterranean region (Katsanevakis et al., 2017). In conclusion, ad‐
vancing the use of LEK across large geographical scales allows bring‐
ing together the voices of people from different countries, ultimately 
preparing for a world of global ecological change. We believe that this 
beneficial partnership, which was here demonstrated to provide tan‐
gible results at the regional scale, could be extended to assessments 
at the global scale, if properly designed and organized.
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Species Model R2 Adj. Dev. GCV edf F p

F. commersonii Break ~ s(Lat) 0.82 84.1 2.41 5.67 33.56  <0.001

Jump ~ s(Lat) 0.56 73.2 1.03 4.61 19.46  <0.001

Arrival ~ s(Lat) 0.65 65.0 6.66 3.05 25.93  <0.001

Break ~ s(Long) 0.47 53.3 6.88 4.69 8.11  <0.001

Jump ~ s(Long) 0.65 82.4 0.82 4.76 36.04  <0.001

Arrival ~ s(Long) 0.47 49.2 10.03 2.62 15.46  <0.001

P. saltatrix Break ~ s(Lat) 0.12 16.0 46.34 5.40 4.01  <0.01

Jump ~ s(Lat) −0.06 15.1 0.81 5.28 3.78  <0.01

Arrival ~ s(Lat) 0.10 13.3 51.82 3.47 3.86  <0.01

Break ~ s(Long) 0.07 8.1 48.18 3.13 2.28 0.056

Jump ~ s(Long) −0.45 0.2 1.06 1.00 0.31 0.636

Arrival ~ s(Long) 0.07 9.9 53.19 3.09 2.73  <0.05

S. viridensis Break ~ s(Lat) 0.32 33.6 37.45 1.00 23.25  <0.001

Jump ~ s(Lat) 0.41 41.9 0.57 4.77 5.18  <0.001

Arrival ~ s(Lat) 0.33 35.5 37.96 1.92 10.27  <0.001

Break ~ s(Long) 0.33 36.2 39.95 4.88 3.95  <0.01

Jump ~ s(Long) 0.28 34.8 0.71 5.35 3.80  <0.01

Arrival ~ s(Long) 0.17 22.8 49.74 4.72 2.07 0.100

TA B L E  1  Species‐specific modelling 
results for the year of break and jump 
respect to latitude and longitude. Each 
model is represented together with the 
R squared adjusted values (R2 Adj), the 
amount (%) of deviance explained (Dev), 
the generalized cross validation (GCV), the 
effective degrees of freedom (edf), the F 
statistics values (F) and the corresponding 
p values for the smoothing term (p)
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of the interview, respondents were informed about the purposes of 
the study and gave informed consensus to use the provided informa‐
tion for scientific purposes.
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