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Introduction
Mediterranean climate regions represent less than 5% of the 
Earth’s surface, but host almost 20% of the world plant species 
(Cowling et  al., 1996; Quezel, 1999). Located on a latitudinal 
gradient between temperate European ecosystems and semi-arid/
desert subtropical conditions of North Africa, the Mediterranean 
basin is characterized by a warm and dry summer season (Pau-
sas, 2004; Sá et al., 2017), making it a fire-prone region (Keeley, 
2009; Mouillot et al., 2002, 2003). Within this region, Corsica, 
belonging to the Tyrrhenian Islands, is well known for its biodi-
versity values, partly due to the high number of endemic species 
(Médail, 2017; Médail and Verlaque, 1997), making it one of the 
best preserved Mediterranean forest ecosystems (Medail and 
Quezel, 1997; Vogiatzakis et al., 2016). For these reasons, it is 
one of the most susceptible areas to climate and disturbance-
regime changes (Giannakopoulos et  al., 2005; Giorgi, 2006; 
Vogiatzakis et al., 2016). Currently, we are witnessing an agro-
pastoral land abandonment of most the mountain areas of the 
island (Mouillot et  al., 2005; San Roman Sanz et  al., 2013). 
Moreover, a global increase in temperature and drought is pre-
dicted in the next decades (Giorgi, 2006; Giorgi and Lionello, 
2008; Moriondo et al., 2006; Pausas, 2004). So we can expect an 
alteration of future fire regime and impacts on biodiversity 
(Colombaroli and Tinner, 2013; Pausas, 2004; Pausas and 
Fernández-Muñoz, 2012; Piñol et  al., 1998), even if Corsican 
ecosystems seem well adapted to fire (Leys et al., 2014, 2018; 
Mouillot et  al., 2008). Indeed, these ecosystems result from a 
long history of interactions between fire, land use and vegetation 

under variable climate conditions (Carcaillet et al., 2007; Leys, 
2012; Leys et  al., 2013). However, these interactions are still 
debated in Corsica and more generally at the regional scale (e.g. 
Carcaillet et al., 2007; Colombaroli and Tinner, 2013; Colom-
baroli et  al., 2009; Vannière et  al., 2016, 2011), and would 
deserve more studies fed by robust long-term datasets.

In this study, we will try to answer the following questions: 
How can we explain the Corsican vegetation composition? Can 
we observe different fire regimes during the Holocene? Are they 
linked with a particular vegetation pattern? What is the role of 

Fires and human activities as key factors  
in the high diversity of Corsican vegetation

Marion Lestienne,1,2  Isabelle Jouffroy-Bapicot,1  
Déborah Leyssenne,1 Pierre Sabatier,3 Maxime Debret,4  
Pierre-Jean Albertini,5 Daniele Colombaroli,6 Julien Didier,1 
Christelle Hély2,7 and Boris Vannière1,8 

Abstract
In the Mediterranean region, Corsica represents one of the most important hotspots of biodiversity, partly due to the high number of endemics species. 
This region is also one of the most affected by forest fires worldwide. The present vegetation is adapted to a wide range of disturbance regimes, but 
a change in fire frequency or intensity in the future may severely affect ecological resources and other socio-economical aspects. Here, we study the 
dynamics of vegetation–human–fire interactions for the past 12,000 years as recorded by Lake Bastani (Corsica, France). We used well-dated sedimentary 
records of charcoal, pollen and fungal spores to infer past fire regime, land cover and pastoral activities, respectively, and we compared our results with 
charcoal records from two other Corsican lakes (Nino and Creno, respectively). Our results suggest that climate and natural fires were the main factors 
shaping the landscape before 5000 cal. BP. Then, the extraordinary diversity of the current Corsican vegetation has been mainly promoted by human 
activities on the island (i.e. deforestation and pastoralism) at least from the Bronze Age (3500 cal. BP). The top of our record shows a sharp decrease in 
fungal remains (Sporormiella-type), usually associated with pastoral activities, which could be attributed to the land abandonment occurring since a few 
decades.

Keywords
Mediterranean, Holocene, Corsica, pollen, charcoal, fungal spores, pastoralism, deforestation, biodiversity

Received 8 March 2019; revised manuscript accepted 26 August 2019

1�Chrono-Environnement, CNRS, Université Bourgogne Franche-Comté, 
Besançon, France

2ISEM, Université Montpellier, CNRS, EPHE, IRD, Montpellier, France
3�Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, 
EDYTEM, Chambéry, France

4�Laboratoire de Morphodynamique Continentale et Côtière, UMR 
6143, Université de Rouen, Mont-Saint-Aignan, France

5Collectivité territoriale de Corse, Assemblée de Corse, Ajaccio, France
6�Department of Geography, Royal Holloway, University of London, 
Egham, UK

7EPHE, PSL University, Paris, France
8�MSHE Ledoux, CNRS, Université Bourgogne Franche-Comté, 
Besançon, France

Corresponding author:
Marion Lestienne, Chrono-Environnement, CNRS, Université 
Bourgogne Franche-Comté, 16 route de gray, Besançon 25030, France. 
Email: marion.lestienne@umontpellier.fr

883025 HOL0010.1177/0959683619883025The HoloceneLestienne et al.
research-article2019

Research Paper

https://uk.sagepub.com/en-gb/journals-permissions
https://journals.sagepub.com/home/hol
mailto:marion.lestienne@umontpellier.fr
http://crossmark.crossref.org/dialog/?doi=10.1177%2F0959683619883025&domain=pdf&date_stamp=2019-10-29


2	 The Holocene 00(0)

humans in driving the ecological dynamics? Palaeoecological 
studies are great tools to answer these questions by permitting the 
reconstruction of past plant assemblages, fire regimes and human 
presence, and in order to study their relationship on the long-term 
socio-ecological trajectories (e.g. Colombaroli et al., 2007, 2008; 
Lestienne et al., 2017; Vannière et al., 2008).

Reille et al. (1992b, 1999) have been the first to reconstruct 
the Holocene Corsican vegetation from the Creno Lake sediment 
record in particular and a few other peat sequences. They high-
lighted the dominance of Pinus and Erica arborea in the early 
Holocene, followed by a significant change during the Neolithic, 
notably with an increase in Quercus ilex-type and Quercus pube-
scens-type, which thereafter dominated regional vegetation dur-
ing most of the Holocene. These authors assumed that changes in 
climate and possibly fire regime could explain these vegetation 
changes. Carcaillet et al. (1997) used pedoanthracology to high-
light the link between fire and the arrival of Quercus ilex in Cor-
sica. These studies were precursors for Corsican history but they 
suffered from a lack of precise chronology. Later, Leys et  al. 
(2014) investigated once more Lake Creno in order to reconstruct 
past fires and vegetation using charcoal (local to regional scale) 
and macro-remains (local scale). This study based on well-dated 
cores focused on Pinus nigra ssp. laricio (endemic Corsican spe-
cies) expansion and demonstrated the presence of this pine during 
all the Holocene, often combined with deciduous broadleaf trees. 
Today, we propose to document the human impact on Corsican 
vegetation and fire regime to complete this history of the island. 
Moreover, no study has ever looked for the biodiversity dynamics 
in Corsica for the entire Holocene. While conservation prob-
lematics are more and more important worldwide, and particu-
larly in the biodiversity hotspots like Corsica, we propose to 
reconstruct Corsican plant biodiversity dynamics.

This study focuses therefore on the vegetation diversity, 
human practices, fire regimes and their interactions in the past 
12,000 years in Corsica. For these, we used a high-resolution and 
well-dated sedimentary record from Bastani Lake, which is a 
2000-m elevation water body well located to capture a regional 
signal. Bastani Lake is a key study site for Corsica because (1) it 
is a good candidate to capture a signal at the landscape scale due 
to its high elevation, very restricted watershed and its windward 
exposure to strong winds (Conchon, 1988; Roche and Loye-Pilot, 
1989) and (2) its sedimentation rate is almost constant and the 
chronology covers all the Holocene. This study is also based on a 
multiproxy approach (charcoal, pollen, fungal remains) in order 
to reconstruct biomass burning, land cover dynamics and land use 
history of the Monte Renoso area. In addition, we have used an 
innovative method of charcoal morphologies calculation. We will 
discuss the interest of using such method for advancing palaeoen-
vironmental inferences.

Because fire has been a major driving force in the Mediterra-
nean region since the emergence of the Mediterranean climate 
(Médail, 2017), we hypothesize that fires could be one of the fac-
tors favouring the maintenance of the high biodiversity character-
izing the Mediterranean region.

Our data contribute to the global Mediterranean fire knowl-
edge by providing a new quantitative and high-resolution series 
from a key region in the Central Mediterranean region.

Materials and methods
Study area
Lake Bastani (42°30′ N, 9°80′ E) is located in Corsica (France), 
in front of the Monte Renoso mountain, and is one of the highest 
lakes in the island (Figure 1a). This lake covers 43,800 m2 with a 
maximum depth of 24 m and has a restricted watershed of 
173,000 m2, mainly composed of granodiorite, containing no 
permanent streams and delivering very limited local lithogenic 

input to the lake sediment (BRGM, 2009). It formed behind a 
glacial cirque dammed by moraine abandoned by the glacier in 
the late-Glacial period (14,000 cal. BP) (Gauthier et al., 1984). 
Due to the topography, this windward lake is a good captor for 
wind-transport particles including pollen and charcoals produced 
in the surrounding regional area (Conchon, 1988; Roche and 
Loye-Pilot, 1989). It lies at the boundary between the subalpine 
and alpine vegetation belts (Figure 1b), and is characterized by 
cold winter and mild summer (Gamisans, 1999). Grasslands and 
low shrubby formations of Alnus viridis subs. suaveolens, Juni-
perus and Berberis compose the surrounding vegetation. Further 
down in the valley, more and more dense mixed oak forest is 
composed of Quercus ilex, Quercus pubescens, Pinus nigra, 
Erica arborea and Arbutus unedo (Figure 1b and c) (Gauthier et 
al., 1983; Reille et al., 1999, 1997)

Core extraction and dating
The lacustrine sediment cores were extracted from a floating plat-
form using a UWITEC gravity corer. Two core sections composed 
the whole record sequence (183 cm) called BAS15-MC (Table 1). 
The chronological control was based on a combination of (1) 10 
radiocarbon dates obtained at the Poznan Radiocarbon Labora-
tory on diverse macro-remains of terrestrial origin (leaves, seeds, 
charcoals and wood), (2) one age estimated for the main late-Gla-
cial/early Holocene transitions indicated by the pollen stratigra-
phy and the geochemistry data and (3) 2 radiometric markers 
derived from short-lived radionuclides (210Pb, 137Cs) for the top 
of the core. Based on these chronological markers, Clam package 
(R software, R. RCore and Team, 2018) has been used to generate 
an age depth model (Table 1) within a 95% confidence limit 
(Blaauw, 2010).

Charcoal analysis
A total of 271 contiguous sediment samples were retrieved along 
core BAS15-MC each 10 or 5 mm (depending of the sedimenta-
tion rate). For charcoal extraction, each sample was washed on an 
80-µm mesh sieve after hydrochloric acid and hydrogen peroxide 
treatments according to the standardized macro-charcoal sieving 
method (N and Rhodes, 1998; Whitlock and Larsen, 2002).

All charcoal particles from each sample have been observed 
with a digital microscope coupled to the high-speed camera Key-
ence VHX-5000. Images, observed using a 100-magnification, 
have been assembled to observe the entire sample on one picture 
with a high precision. From this picture, and adding information 
on charcoal visual characteristics (colour and brightness ranges), 
the microscope software performs a semi-automated counting of 
charcoal particles present in the sample: each particle correspond-
ing to the colour and brightness ranges chosen are selected and 
the user visually checks each particle. The Keyence VHX-5000 
software also measures the length, width, area and perimeter of 
each selected particle.

The charcoal record was quantified calculating the CHarcoal 
Accumulation Rates (CHAR), that is, the quantity of charcoal 
particles per volume of sediment and per unit of time according to 
the sedimentation accumulation rate estimated by the depth-age 
model. Charcoal quantity has been estimated using either the 
number of charcoal particles per area unit and time unit 
(‘CHARnb’: #/cm2/yr), or the total area of charcoal particles per 
area unit per time unit (‘CHARar’: µm²/cm2/yr). The comparison 
of these two metrics provides information about the mean char-
coal particle size of each sample. Significant charcoal peaks have 
then been highlighted using the Char_Analysis software by sub-
tracting the CHAR-background, which represents the variation in 
overall charcoal production, sedimentation, mixing and sampling, 
from the CHAR-series (Higuera, 2009). The morphology of char-
coal particles has also been quantified to inform about the type of 
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biomass burned (Enache and Cumming, 2006; Leys et al., 2017; 
Mustaphi and Pisaric, 2014; Umbanhowar and Mcgrath, 1998). In 
this study, we measured the commonly used normalized width 
versus length ratio (W/L). A positive ratio shows ‘compact’ parti-
cle, and a negative ratio shows an ‘elongated’ particle (Enache and 
Cumming, 2006). Using the high-precision microscope allowed 

us to define a new proxy to describe the charcoal shape complex-
ity by measuring the normalized area versus perimeter ratio (A/P). 
A positive ratio shows that the particle is ‘geometric’, and a negative 
ratio shows that the particle is ‘indented’. Because these measures 
are rarely studied, a short synthesis, as exhaustive as possible, 
seemed to be appropriate to introduce our results.

The first meaningful study about the morphology of charcoal 
particles has been performed by Patterson et  al. (1987). They 
studied the size of charcoal particles by comparing it with the 
potential distance that the particle could travel: the smaller the 
particle, the longer the distance it can travel from the place it was 
produced, adding the influence of the wind on the charcoal parti-
cles distribution. Moreover, the proximity of several fires can bias 
the observer. Later, it was shown that small particles reflect a 
regional signal whereas bigger particles reflect a more local 

Figure 1.  Current context of the Lake Bastani region (Corsica, FR). (a) Geographical context of the lake Bastani. (b) Current surrounding 
vegetation (CNRS Ecolab and CORINE Land Cover 2006 revised (2012)) and current palynological record (top-core sample). Map have been 
generated with the Quantum GIS software version 3.4.1. (c) Topographic section (https://www.geoportail.gouv.fr/) including the dominant vegetation. 

Table 1.  List of core sections used for the Master Core of 
Bastani Lake sequence (BAS15-MC) and sub-sampling bins used for 
palaeoecological discrete analyses.

ID Depth (cm) Sampling

BAS15_P1 8–23 Half-centimetric
BAS15_ P1 23–66 Centimetric
BAS15_ P6 57–110 Centimetric
BAS15_ P6 110–185 Half-centimetric

https://www.geoportail.gouv.fr/
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signal (Clark and Royall, 1995). More recent studies (e.g. Ali 
et al., 2009; Carcaillet et al., 2001; Leys et al., 2013; Whitlock and 
Larsen, 2002) have suggested that the differences in charcoal 
sizes retrieved in sediments are mainly due to fire type (crown or 
surface fires) and taphonomical processes, including charcoal 
transportation.

In parallel, Umbanhowar and Mcgrath (1998) used the char-
coal morphology as an indicator of the vegetation type in the Min-
nesota forests (USA). To quantify the different morphotypes, they 
used the width/length ratio and found that elongated particles 
(normalized ratio <0) would correspond to herbaceous fuels, 
when intermediate W/L ratio would correspond to charcoal 
derived from leaves or wood. Since then, several authors added 
their contribution by developing classifications of the different 
charcoal morphologies. Among them, Jensen et  al., (2007) 
defined five common charcoal morphotypes by comparing them 
with charcoals from prescribed burns of modern plant material. 
From this experience, they concluded that grass cuticles, conifer 
wood and leaves of some broadleaved taxa produce different and 
recognizable charcoal types. Similarly, Enache and Cumming 
(2007) defined seven distinct morphological types of charcoals. 
In contrast to the previous study, they assume that charcoal mor-
phologies are related to the bio-geo-climatic and lake watershed 
characteristics and so they suggest that they can provide insights 
into past fire and climate. From these two founding studies, Mus-
taphi and Pisaric (2014) developed a new classification of 27 
charcoal morphotypes. Beyond their conclusions, we can note 
that some morphotypes can easily be attributed to specific fuel. It 
is the case for elongated charcoals, which can correspond to grass, 
and for porous charcoals, which can correspond to needles, grass 
or leaves. Some morphotypes can also be used as an indicator of 
the kind of signal and/or of the kind of transport. For example, a 
morphotype that presents an indented shape and/or that is associ-
ated to fragile fuel as leaves can also reflect a local signal and a 
lower transport energy regime (Vannière et al., 2003).

Pollen and fungal remains analysis
In parallel to charcoal treatments, sedimentary samples were also 
prepared according to standard techniques for pollen analysis 
(Fægri and Iversen, 1989), including Lycopodium tablets addition 
for estimating pollen and fungal spore concentrations (grains/
cm3) and influx (grains/cm2/year; Stockmarr, 1971). Pollen grains 
were identified using keys, photographs (Reille, 1992a) and with 
reference to the modern pollen collection at the Chrono-environ-
ment Laboratory in Besançon. On the same slides as for pollen, 
algal and fungal remains, which were the main non-pollen paly-
nomorphs, were identified and counted using the available litera-
ture (present-day ecology: Ellis and Ellis, 1986, palaeoecology; 
e.g. Van Geel, 2001, Van Cugny et al., 2010; Geel and Aptroot, 
2006). Pollen and fern spores counting was performed using the 
Polycounter free software from Nakagawa (available online: 
http://polsystems.rits-palaeo.com/index.html#PolyCounter). For a 
given sample, pollen grain counts stopped when both the diver-
sity curve and the main taxa percentages stabilized (min count 
520 and max count 2900). For the algal and fungal remains count-
ing, a minimum count of 350 Lycopodium spores per sample was 
reached for the assessment of fungal spore concentration (Etienne 
and Jouffroy-Bapicot, 2014). Pollen percentages were based on 
the sum of dry-ground vascular plant pollen (i.e. total terrestrial 
pollen or total land pollen; TLP). Relative values of pollen were 
calculated as a percentage of the TLP sum (TLPS) using the Tilia 
software (ref), and the relative and influx diagrams were con-
structed with TGView (Grimm, 1991, 2004). The relative pollen 
patterns and the fungal remain assemblages were individually 
divided along the overall temporal sequence into significantly dif-
ferent periods using stratigraphic constrained cluster analysis, 
with the Tilia CONISS function (ref).

Biodiversity analysis
Redundancy analysis (RDA; Lepš and Šmilauer, 2003; Ter 
Braak and Smilauer, 2002) is a statistical procedure to express 
how much of the variance in one set of variables (response vari-
ables) can be explained by another set of variables (explanatory 
variables). Two environmental variables were included as pos-
sible explanatory factors for the pollen species composition. 
The first one is the charcoal influx as a fire proxy (e.g. Colom-
baroli et  al., 2009). The second one is the Sporormiella-type 
fungal remain, which is one of the most reliable indicators of 
herbivory and the most used proxy of pastoral activities (Baker 
et al., 2013).

To assess the biodiversity changes in the lake surroundings, 
pollen diversity has been estimated using richness (Birks and 
Line, 1992) and evenness (Hurlbert, 1971) to encompass both 
diversity dimensions. Palynological richness corresponds to the 
expected number of taxa found in samples of equal size as esti-
mated by rarefaction analysis. It is a robust method used in 
many palaeoecological studies, including the Mediterranean 
environments (Beffa et  al., 2016; Colombaroli et  al., 2007, 
2009; Colombaroli and Tinner, 2013). It was achieved in this 
study using the Vegan package (Dixon, 2003) of the statistical 
software R (Venables et al., 2018) and a constant pollen sum, 
which was standardized on the minimum pollen sum (n = 520).

The probability of interspecific encounters (PIE) was used as 
an index of evenness (Hurlbert, 1971). This index gives the prob-
ability that two randomly sampled pollen grains from a given 
habitat type represent two different species, and it is calculated as 
follows:
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where N is the total number of taxa and p is the frequency of each 
taxon in the assemblage.

Finally, the Spearman’s rank-correlation (Spearman, 1904) 
was used to assess the covariation between biodiversity character-
istics (i.e. richness, evenness) and environmental factors (fire and 
pasture). Only the main results from these analyses are presented 
in the ‘Results’ section. The detailed results are presented in the 
Supplementary Material (available online).

Results
Age-depth model
The sediment from BAS15-MC is composed of two units, the 
upper unit (0–180 cm) consists of olive-grey silty clay rich in 
organic content and a lower unit (180–183 cm) is formed of light 
grey clay with low organic content. The first unit presents two 
phases with higher organic content from 170 to 100 cm and over 
the last 5 cm. The age-depth model obtained indicated that the 
Bastani Lake sediment record (183 cm) covers the entire Holo-
cene (Figure 2). The oldest part is dated from 11,650 cal. BP. 
There is an average of 68 years on each centimetre (median is 79 
years) for the whole Holocene. The unit change corresponds to 
the late-Glacial/Holocene transition. The accumulation rate is 
constant around 0.01 cm/yr between the beginning of the Holo-
cene and 1600 cal. BP. Between 1600 and 500 cal. BP, there is an 
accumulation rate increase from 0.01 to 0.06 cm/yr. Then it 
decreases until 0.03 cm/yr between 500 and 150 cal. BP and 
increases again until reaching 0.05 cm/yr nowadays.

Pollen, fungal remains and charcoal dynamics
Eight global zones have been highlighted on the basis of the local 
pollen zones and local fungal remains zones obtained with the 
CONISS cluster analysis and according to the CHAR signal 
(Figure 3 and Table 3). The details for each proxy and zone are 

http://polsystems.rits-palaeo.com/index.html#PolyCounter
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presented in the Supplementary materials (II and III) available 
online.

Zone 1 (12,000–11,500 cal. BP, i.e. the Palaeolithic period).  The 
beginning of the Holocene was characterized by a sharp decrease 
in the herbaceous taxa curve, rising from 40% to 20% of the 
TLPS, mainly represented by Artemisia and a concomitant rise of 
arboreal pollen. Pinus widely dominated the woody taxa (from 
55% of the pollen at the beginning to 85% at the end of the 
period). Some trees and/or shrubs were also present: Alnus all 
over the period, Juniperus at the beginning and Corylus at the end 
of the period. The quantity and diversity of fungal remains were 
low and Sporormiella-type was the only type represented all over 
the period. Charcoal influx values were very low without a sig-
nificant charcoal peak.

Zone 2 (11,500–7500 cal. BP, i.e. the Mesolithic period).  From 
11,500 to 9500 cal. BP (2a), Pinus was largely dominant. From 

9500 cal. BP (2b), the relative proportion of trees and shrubs ver-
sus herbaceous did not change, but the percentages of Pinus 
dropped sharply to 40% of TLPS, while the percentages of Erica 
increased very rapidly up to 40%. Other taxa remained stable. 
This period was also characterized by an increase in the charcoal 
signal and 18 significant charcoal peaks brought out, up to 1.5 #/cm2/yr 
and 5000 μm2/cm2/yr. They accounted for 42% of the total num-
ber of peaks over the last 12,000 years. The most fire-prone period 
(i.e. high concentration of charcoal peaks) occurred between 
11,000 and 10,000 cal. BP. The W/L ratio of the charcoal particles 
stayed slightly higher than zero indicating compact charcoal par-
ticles. Similarly, the high A/P ratio was representative of geomet-
ric particles. Finally, the charcoal particle size was broadly small 
(CHARnb curve is higher than CHARar curve), while the fungal 
remains did not change.

Zone 3 (7500–6500 cal. BP, i.e. the early Neolithic period).  Around 
7500 cal. BP, Erica’s curve displayed a dramatic and sustained 
decrease from 40% to 10% of the TLPS. Conversely, Pinus rose 
again up to 60%. This period also marked a strong diversification 
of shrub species. The fungal remains assemblages were slightly 
more diversified (Xylariaceae/Coniochaetaceae from 7500 cal. 
BP onward). In the same time, the charcoal content declined and 
peaks were rare.

Zones 4 (6500–5000 cal. BP, i.e. the mid- to the late-Neolithic 
period).  From 6500 cal. BP, Quercus ilex-type and Quercus pube-
scens-type rose together, while evergreen Quercus pollen was the 
most important type influencing the variation of the global curve 
of Quercus. Alnus stabilized around 10% and its local presence 
has been highlighted thanks to pollen clumps in the palynofacies, 
as for Poaceae that slightly increased as well. A slight but globally 
continuous increase in fungal remains was observed at the same 
period, especially the most dung-related fungi. The usually wood-
related types (Xylariaceae to Helicoon) were much more diversi-
fied and continuously present than before. Only one significant 
charcoal peak was recorded, and both CHARnb and CHARar 
decreased down to less than 0.5 #/cm2/yr and 5000 μm2/cm2/yr, 
respectively.

Figure 2. Age-depth model for Bastani Lake sequence. Details for 
each date are presented in Table 2.

Figure 3. Age scaled diagram of pollen percentages, fungal spores and charcoal influx with indication of the main zones of the evolution.
Pollen are represented as relative curves (%). Fungal remains are represented as influx curves (#/cm2/yr).Charcoal accumulation rates are presented 
both by the particle number (black curve; #/cm2/yr) and the total particle area (red curve; μm2/cm2/yr). Crosses highlight fire episodes marked by sig-
nificant peaks detected with Charanalysis statistical treatment (Higuera et al., 2009). The normalized width/length (W/L) ratio and the normalized area/
perimeter (A/P) ratio of charcoal document change in particle shape.
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Zone 5 (5000–3500 cal. BP, i.e. from the Chalcolithic to the Bronze 
Age).  No significant changes were observed for pollen and fungal 
remains. Nevertheless, the CHARnb and CHARar strongly 
increased with nine significant peaks (21% of the total number of 
peaks), especially just before 4500 cal. BP when the highest char-
coal peak of the entire sequence was found (>2 #/cm2/yr and 20,000 
μm2/cm2/yr). The mean charcoal particle size increased (CHARnb 
values were lower than CHARar values), the W/L ratio decreased 
a lot, indicating that the charcoal particles were more elongated, 
and the A/P ratio was low, suggesting indented shape.

Zones 6 (from 3500–1800 cal. BP, i.e. from the final Bronze Age to 
the Iron Age).  The decrease in Pinus abundance drove an overall 
decrease in trees and shrubs, despite a slight increase in both 

evergreen Quercus and mountainous species (Abies and Fagus). 
The number of herbaceous taxa increased, especially Poaceae and 
human-related taxa such as crops (Hordeum-type, Triticum-
type),and ruderals (Plantago-type, Rumex). The quantity of fun-
gal remains significantly arose after 3500 cal. BP and Sporormiella 
sp. Delitchia sp., the Sordariales and Arthinium sp. were well-
represented taxa. The charcoal signal stayed high with six signifi-
cant peaks.

Zone 7 (from 1800 to 800 cal. BP, i.e. the Roman and Middle 
Ages).  At this time, most of the trees and shrubs taxa maintained, 
except Quercus ilex-type, Quercus pubescens-type and Pinus, 
which decreased in favour of the herbs. The presence of the typi-
cal Mediterranean cultivated tree species (Olea, Juglans and 

Table 3.  Summary of the eight main periods of palaeoecological changes occurring in the Lake Bastani sequence.

Main zones Age cal. BP Local pollen zone Local fungal remains zone Local charcoals zone

1 12,000 1a Very low diversity. Pinus is 
dominant

A Very low quantity and diversity. 
Sporormiella sp. is dominant

Low CHARnb and CHARar. No significant 
charcoal peaks

2 11,500 1b Pinus is still dominant, diver-
sity increases

Strong increase of CHARnb and CHARar. A 
total of 18 significant charcoal peaks. Small, 
compact and geometric particles  2a Erica increases while Pinus 

decreases
 

3 7500 2b Erica decreases while Pinus 
increases. Shrubs are diver-
sifying

B As previous zone, but diversity 
is increasing

Decrease of CHARnb and CHARar. Only 
one charcoal peak

4 6500 2b’ Development of Quercus ilex-
type. Poaceae increase

C Strong increase of all taxa, 
including dung-related fungi and 
wood related taxa

 

5 5000 Small decrease between 1250 
and 800 cal. BP

Strong increase in CHARnb and CHARar

6 3500 3a Decrease of Pinus and other 
trees. Increase of herbaceous 
and human related taxa

15 significant charcoal
peaks. Big, elongated and indented particles

7 1800 3b Decrease of trees and 
increase of herbs

Decrease of CHARnb and CHARar. One 
significant charcoal peak

8 800 4 Presence of typical  
Mediterranean cultivated 
species

D Strong increase of the quantity 
and diversity of all taxa

Increase of CHARnb and CHARar. Six sig-
nificant charcoal peaks. Very small, compact 
and geometric particles

These zones have been highlighted on the basis of pollen zones and fungal remains zones obtained with the CONISS cluster analysis and on the 
CHARnb and CHARar variations (Figure 3). For detailed pollen and fungal remains diagram, see the Supplementary materials, available online.

Table 2.  Pb210, 14C and pollen-inferred ages used for age-depth model of Bastani Lake sequence.

ID Depth (cm) Lab code 14C yr BP Yr BP Dated material

1 Top 0 −65  
2 Cs137 bomb 3 −13 ± 2  
3 210Pb 4.4 50 ± 5  
4 BAS13_P1-20 14.5 Poz-69623 325 ± 30 Terrestrial macro-remains
5 BAS13_P1-30 26.5 Poz-69624 545 ± 30 Terrestrial macro-remains
6 BAS13_P1-46 47 Poz-73333 1410 ± 30 Terrestrial macro-remains
7 BAS13_P1-55 57 Poz-69625 2110 ± 30 Terrestrial macro-remains
8 BAS15_P6-62 61 Poz-91245 1990 ± 30 Wood
9 BAS15_P6-75 74 Poz-91246 2875 ± 30 Wood
10 BAS13_P4-102 76.5 Poz-61153 3000 ± 35 Terrestrial macro-remains
11 BAS15_P6-92 91 Poz-109519 3660 ± 35 Terrestrial macro-remains
12 BAS15_P6-98 97 Poz-91247 3940 ± 40 Plant remains
13 BAS15_P6-113.5 112.5 Poz_909520 4430 ± 35 Terrestrial macro-remains
14 BAS15_P6-114 113 Poz-96090 4280 ± 120 Charcoal
15 BAS15_P6-128 127 Poz-91248 6130 ± 40 Plant remains
16 BAS15_P6-131 130 Poz-96091 6400 ± 50 Charcoal
17 BAS15_P6-148 147 Poz-91249 7960 ± 50 Plant remains
18 BAS15_P6-181  

(Holocene pollen data)
182 11,650  
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Castanea) was more regular and their proportion more important. 
Between 1250 and 800 cal. BP a decrease in some of the main 
fungal remains types, especially Sporormiella sp. and Arthrinium 
sp. was part of a global decrease. The charcoal signal became very 
weak with only one significant charcoal peak at ca. 1400 cal. BP.

Zone 8 (after 800 cal. BP, i.e. from the Middle Age to the Modern 
times).  No significant changes in the vegetation were observed, 
but the diversity and the quantity of fungal remains reached their 
maximum values during this last period, especially at its beginning. 
The best dung indicators types, namely Sporormiella sp. and 
Sordaria sp., were largely dominant. The charcoal signal also 
increased until reaching six significant peaks (more than 1 #/cm2/yr 
and 2500 μm2/cm2/yr) at about 500 cal. BP, then it decreased rap-
idly until almost zero. This period encompassed a new decrease in 
the A/P ratio and an increase in the W/L ratio, indicating more 
compact and geometric particles. In the same time, the mean par-
ticles size decreased and seemed to be smaller than the first period 
(the CHARar values were much lower while the CHARnb values 
are similar).

Vegetation and biodiversity dynamics
RDA with charcoal influx suggests that fire explains 10.5% of the 
vegetation dataset variance (Figure 4). Erica and Pinus taxa are 
positively correlated to charcoal influx, whereas Olea, Quercus, 
Plantago major/media and Juniperus are negatively correlated. 
Spores of dung fungus Sporormiella-type explains 26.5% of the 
vegetation data variance and are positively correlated with Casta-
nea, Vitis, Plantago lanceolata, Alnus, Triticum-type and Poaceae 
pollen taxa.

Palynological richness has increased over time since the 
beginning of the Holocene (Figure 5). The expected number of 
pollen types has increased from 20 (c. 11,000 cal. BP) to 50 now-
adays. This increase was more marked starting from c. 3500 cal. 
BP onwards, at the same time as the increase in cultivated species 
(Plantago, Olea europea, etc.) and Poaceae and the increase in 
Sporormiella-type (shift from Zone 5 to Zone 6). Pollen even-
ness showed the same increasing trend as palynological richness 
during all the Holocene. The increase was more marked before 
7500 cal. BP, and then remained relatively constant until c. 3500 
cal. BP, before a new increase, up to the present values. Palyno-
logical richness and pollen evenness showed positive correlation 
(rho = 0.72, p value < 0.001).

The palynological richness has been also plotted as a func-
tion of CHARnb and CHARar and Sporormiella-type influx to 
highlight potential correlations (Figure 6). We could not high-
light a significant correlation between the palynological rich-
ness and CHAR, but we observed a maximum of richness for 
an intermediate value of CHAR around 0.5 #/cm2/yr (number) 
and 1500 μm2/cm2/yr (total area). Lower or higher CHAR values 
were related to lower richness. The Sporormiella-type influx 
ranged between 0 and 555 #/cm2/yr (mean was 96.81) and it was 
significantly positively correlated with palynological richness 
(rho = 0.74, p value < 0.01). The detailed results are available 
in the Supplementary materials (IV–VI), available online.

Discussion
Dynamics of Corsican landscape during the 
Holocene
The early Holocene was characterized by the recolonization of 
the woody vegetation (Reille, 1992b; Reille et al., 1999). At this 
time, our results, recording many CHAR peaks (Figure 3), sug-
gest a sustained fire regime. The dry climatic conditions during 
the summer (Drescher-Schneider et  al., 2007; Finsinger et  al., 
2010; Rossignol-Strick and Paterne, 1999; Vannière et al., 2011) 
adding to the increase in the fuel availability (Reille et al., 1999, 

Figure 4.  RDA biplot of the selected species and two explanatory variables: charcoal influx and spores of the dung fungus Sporormiella 
influx are used as proxies for fire (which influences 10.5% of data variance) and presence of grazing mammals (which influences 26.5% of 
data variance). Castanea, Alnus, Triticum and Poaceae, compose the first group, Erica and Pinus compose the second group, and Plantago, Junipeus, 
Quercus pubescens-type and Quercus ilex-type compose the last group.

Figure 5.  Comparison between palynological richness estimated 
on a constant sum of 693 pollen grains. Spearman’s rank correlation 
between richness and evenness: rho = 0.73 // p value > 0.001.
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1997) could have favoured fire ignition and propagation during 
the early Holocene. This trend has been observed in several Medi-
terranean sites (e.g. Vannière et  al., 2008; Wick et  al., 2003) 
including the Corsican Creno Lake (Leys et  al., 2014). At this 
time, open to closed forest dominated by Pinus sp. explain a rela-
tively low forest diversity and evenness, in particular for trees 
species (see Supplementary materials IV A, available online). A 
too strong increase in fire frequency or severity prevented the 
development of a diversified landscape, as suggested in our 
results (Figure 4) and supported by the literature (Aranbarri et al., 
2014; Ladd et al., 2004).

Between 9500 and 7500 cal. BP, we observed a strong expan-
sion of Erica, previously observed by Reille et al. (1999). Here, 
we assume that Erica pollen originate from Erica arborea consid-
ering that this species is the main type of Ericaceae growing in 
the hinterland of Corsica (Gamisans, 1999). Nowadays, Erica 
arborea is associated with other tree species such as Arbutus 
unedo or Pinus nigra (Leys et al., 2014; Reille et al., 1999). More-
over, these shrublands are generally considered as early succes-
sional communities (Beffa et al., 2016), and as fire-prone systems 
(Curt et al., 2011) well adapted thanks to high resprouting capaci-
ties (Lloret and López Soria, 1993; Lloret et  al., 2004). These 
observations suggest that the vegetation was composed of a dense 
heather stratum. This period should correspond to a thermal opti-
mum when Erica arborea may have reached higher elevation 
than pines. Models proposed by Pausas (1999, 2006) show that 
under a too high fire frequency, Pinus sp. decreases whereas 
Erica arborea increases, suggesting a change in structure from 
forest to shrublands with fire frequency increase. Moreover, the 
vital attribute model proposed by Noble and Slatyer (1980) 
emphasizes that one of the most important vital attributes corre-
spond to the ability to establish and grow to maturity in the com-
munity. Because fires were more frequent at this time, pine 
probably did not have enough time to mature and produce seeds. 
From this point, and according to Beffa et al. (2016), we suggest 
that this mixed pine/heather forest corresponded to a transition 
state from a forest to a more open environment composed of 
heather. This dominance of Erica shrublands under high fire fre-
quency was probably related to warmer/drier climate conditions 
than today.

A major event, already observed from sediments of Lake 
Creno (Reille et al., 1999), occurred around 7500 cal. BP, with the 
decrease of Pinus. For Reille et  al. (1999), these changes are 
attributed to human activities. Moreover, during that period we 
are witnessing the increase in Poaceae, which supports the human 
impact hypothesis. Comparing our result with previous studies 
(Colombaroli et al., 2009; Leys et al., 2014; Reille et al., 1999), 
we suggest that the wetter climate characterized by low fire 
frequency and potential increase in the moisture availability 

(Drescher-Schneider et al., 2007; Vannière et al., 2008), adding to 
decrease in fuel due to human activities (deforestation and pas-
ture) (San Roman Sanz et  al., 2013) also observed in Tuscany 
(Colombaroli et al., 2009; Finsinger et al., 2010), have favoured 
the evergreen Quercus establishment in Corsica. However, the 
relative part of both drivers (climate and human activities) is dif-
ficult to estimate and needs further study. The long fire-free 
period after this major event helped Quercus ilex-type and Quer-
cus pubescens-type, which are late successional species, to colo-
nize because they are better competitors than Pinus (pioneer 
species) in an undisturbed environment (Carcaillet et  al., 1997; 
Colombaroli et al., 2009; Reille, 1992b). This marked expansion 
of Quercus was associated with a vegetation richness increase 
around 6500 cal. BP, as contemporaneously observed from Creno 
Lake (Reille et al., 1999) and regionally earlier observed (8000–
9000 cal. BP) in central Italia (Colombaroli et  al., 2007, 2008; 
Finsinger et al., 2010).

During the period that followed the development of these 
mixed oakwood forests, the analysis of pollen and dung fungal 
remains pinpointed the correlation between vegetation changes 
and human history. Sporormiella-type was recorded during the 
entire Bastani Lake sequence, probably corresponding to wild 
fauna, but a significant increase superimposed to the appearance 
of other dung fungal remains (e.g. Sordariales, Delitshia sp.) indi-
cates the presence of large herbivores around the lake, at least 
since 5000 cal. BP. The frequentation of the lake area by livestock 
seems to be a plausible explanation for this dung fungal spore 
increase. Moreover, this hypothesis of human presence was fol-
lowed by an increase in charcoal content, which could be 
explained by the land-use transformation from forest into crops 
and pastures through deforestation and use of fire (Janny and 
Costa, 2004). Indeed, the use of fire in European Neolithic cul-
tures for land-use and clearance is widely attested (Carcaillet, 
1998; Clark et al., 1989; Mouillot et al., 2008; Tinner et al., 2005; 
Vannière and Martineau, 2005; Vannière et al., 2008).

Such increase in biomass burning changed the tree composi-
tion by reducing oaks and promoting pines. This forest opening 
during the late-Holocene has also been observed in Sardinia (e.g. 
Beffa et al., 2016), Iberia (e.g. Pausas, 2004) and southern France, 
including Corsica from the palynological reconstruction from 
Creno Lake (e.g. Reille et al., 1999). Moreover, our results show 
a clear increase in anthropogenic activities indicators such as 
ruderal pollen types (e.g. Plantago-type) and a clear increase in 
pasture indicators such as Sporormiella-type suggesting that agri-
cultural and pastoral activities were increasingly practised in the 
area. In agreement with other studies (e.g. Beffa et  al., 2016; 
Colombaroli and Tinner, 2013; Vannière et al., 2008), and even 
though our results cannot totally rule out the role of climate, we 
mainly attribute this opening (increase in NAP and cultural 

Figure 6.  Palynological richness in function of (a) CHAR (number), (b) CHAR (area) and (c) Sporormiella influx.
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indicators) to the increase in human activities (Ghilardi et  al., 
2017; Morelli and Francalacci, 2000).

After 1800 cal. BP, the decrease in charcoal-inferred fire sig-
nal combined with increase in the proportion of dung fungal 
spores and crop pollen suggest that human practices have changed 
and that the population better controlled fire. It is concomitant 
with the end of the Roman Empire, which induced a decrease in 
the human population at the island scale during the medieval 
period (Caratini, 1995; Morelli and Francalacci, 2000). Finally, 
since 800 cal. BP, human impact has been more and more visible, 
particularly by increase in dung fungal spores and by cultivated 
species (Triticum-type, Olea, Castanea). This increase could be 
explained by the strong Tuscan immigration into Corsica observed 
after 800 cal. BP (Morelli and Francalacci, 2000). These human 
activities, in particular crops and pasture, affected all ecosystems, 
from the Alpine belt with pastoralism to the Mediterranean sea 
level with olive groves. They have opened more and more the 
landscape up to the current Corsican landscape. This period of 
demographic increase (Morelli and Francalacci, 2000) contrib-
uted to increase in fire occurrences over the past centuries. More-
over, over the past few decades, decline in pastoral activities and 
land abandonment have been observed, causing a closure of the 
environment (Mouillot et al., 2005; San Roman Sanz et al., 2013). 
This closure combined with the global warming (in particular the 
increase in summer temperature) could promote future uncon-
trolled fires (Giannakopoulos et al., 2005; Moriondo et al., 2006; 
Mouillot et al., 2002, 2003).

Fuel and fire-type changes: from pinewood crown fire 
to slash-and-burn practices
This study participates in the charcoal classification using the 
W/L ratio and a new method to compare the regularity of charcoal 
particle contours by calculating the A/P ratio. These methods have 
the great advantage of being independent of each other. As it is an 
automated measure, these index accuracies are not related to the 
observer and are reusable for any other samples. Finally, the use 
of both CHARnb and CHARar to estimate the change in the par-
ticle size is a king of sensitivity analysis that reinforces our 
findings.

Our results highlighted that each of the three main fire-prone 
periods was associated with different charcoal morphologies. 
During the first period (11,500–6500 cal. BP), the mean particle 
size was small, geometric and not much elongated but particles 
were numerous, which corresponds to what we described as the 
homogeneous pinewood period characterized by frequent fire epi-
sodes. As explained previously, the shape of our charcoals could 
be explained in many ways: first, charcoals could have undergone 
much reshuffle (e.g. Ali et al., 2009; Vannière et al., 2003), sec-
ond, the signal captured may come from a long distance (e.g. 
Clark and Royall, 1995) and finally, the fuel was more woody 
than herbaceous (e.g. Umbanhowar and Mcgrath, 1998). Because 
this period of intense biomass burning at the early Holocene has 
been observed in every Corsican well-dated study (e.g. Carcaillet 
et al., 1997; Leys et al., 2014), we can logically say that this signal 
corresponds to a global trend for Corsica. Moreover, pinewoods 
in the Mediterranean basin tend to engender crown fires (Pausas 
et al., 2009), so the typical shape of our charcoals can also reflect 
a majority of woody fuels.

The second period (5000–1800 cal. BP) was characterized by 
large, elongated and indented particles. We described this period 
as driven by human activities like slash-and-burn practices. 
According to previous studies (Enache and Cumming, 2007; Jen-
sen et al., 2007; Mustaphi and Pisaric, 2014; Umbanhowar and 
Mcgrath, 1998), and to other Corsican studies (Carcaillet et al., 
1997; Leys, 2012; Leys et al., 2014; Reille, 1992b; Reille et al., 
1999), our results could reflect a more herbaceous fuel and local 

signal induced by the development of human activities (e.g. main-
tenance of open landscapes). Because increased charcoal influx 
may be associated with higher fuel consumption (one aspect of 
fire severity) (Dunnette et  al., 2014; Feurdean et  al., 2017; 
Higuera et al., 2011), the higher charcoal peak magnitude at this 
period could also indicate higher fire severity and/or larger burned 
area (Duffin et  al., 2008; Feurdean et  al., 2017; Higuera et  al., 
2009).

During the third period covering the last centuries, the pollen 
grains have been smaller than ever and the charcoals particles 
have been more geometric and less elongated. We described this 
period by an opening of the landscape and an increase in the fire 
signal, mainly due to human activities. This observation reflects a 
global trend, for Corsica (Leys et al., 2014) and worldwide (Blar-
quez et al., 2015; Syphard et al., 2007; Li et al., 2017; Vannière 
et  al., 2016). This shift at 800 cal. BP with small and compact 
charcoals was also highlighted in Italy (lago dell’Accesa; Van-
nière et al., 2008). The authors associated that as a result of ero-
sional processes highlighted by changes in the accumulation rate 
since 1800 years, which are linked with agricultural activities that 
implemented other uses of fire than before (Bajard et al., 2017; 
Giguet-Covex et al., 2014). Our pollen and fungal remains results 
suggest that most parts of the area were open and used as crop 
fields or pastures. Based on the Bastani Lake watershed particu-
larities (small size, no-steep slope and high elevation), erosion 
was likely very limited and observed terrigenous inputs were 
more probably due to African dusts. We have not enough results 
to discuss dust contribution to sedimentation in detail in this 
study, but a more complete study on Bastani erosion will soon be 
available (P Sabatier, personal communication). From these 
observations, it seems that human activities could have contrib-
uted to increase fire frequencies, and the changes in charcoal mor-
photypes probably correspond to a change in the kind of fire and 
fuel.

Did fire and human activities control or affect 
biodiversity?
The representativeness of the vegetation diversity by pollen is 
controversial (Goring et al., 2013; Odgaard, 2006). However, it is 
actually the only way to have an idea of the past vegetation diver-
sity. Moreover, in their review, Birks et al. (2016) show that pol-
len richness is a good indicator of vegetation richness. So, while a 
valuable measure of long-term biodiversity changes (e.g. Colom-
baroli and Tinner, 2013), these results must be interpreted care-
fully (Felde et  al., 2016; Meltsov et  al., 2011; Odgaard, 2001; 
Weng et  al., 2006). Because palynological richness and pollen 
evenness are largely positively correlated, we assume that pollen 
evenness has an effect on palynological richness (Beffa et  al., 
2016; Colombaroli and Tinner, 2013).

In their review, Pausas and Ribeiro (2017) highlight that fire 
can drive plant diversity in various ways. Fire regime can drive 
population divergence and diversification (Bytebier et al., 2011; 
Pausas, 2015) and it can generate landscape mosaics and thus 
more habitat types and more niches likely to be filled by different 
species (Bird et al., 2008; Bond and Keeley, 2005; Cohn et al., 
2015; Leys et al., 2018). In this sense, fire would increase vegeta-
tion evenness by generating the biotic heterogeneity that drives 
diversity (Stein et al., 2014). This positive impact of fire on veg-
etation is observed when both the CHAR and the palynological 
richness increased simultaneously (Figure 6). Nevertheless, 
beyond a certain value (i.e. visually around 0.5#/cm2/yr.), fire fre-
quency induced a strong decrease in the palynological richness. 
Such observation is in line with the intermediate-disturbance 
hypothesis (Fox, 1979), suggesting that when the disturbance 
(here fire) is almost absent (here low CHAR), the interspecific 
competition increases and several species disappear. Conversely, 
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when the disturbance is too strong (here high CHAR), species are 
not adapted anymore and the post-fire recovery only allows a few 
species (the most adapted). Similar trends for the long-term mil-
lennial scale have been observed by Colombaroli and Tinner 
(2013).

Previously, we discussed the role of humans in setting up the 
current Corsican vegetation. In addition, our results highlight that 
the increase in pasture (detected by dung fungi indicator) pro-
moted high plant diversity (Figure 6). These results agree with 
another recent study from the Mediterranean region (Portugal; 
Listopad et  al., 2018). They showed that a grazing exclusion 
shorter than 5 years promotes a high diversity of herbs and shrubs, 
whereas a longer period will promote a higher diversity and 
height of trees, which in turn, will allow them to be protected 
from further grazing (i.e. bush encroachment effect). Currently, 
the high Corsican plant diversity is mainly composed of shrubs 
and herbs forming a landscape of maquis (e.g. Mouillot et  al., 
2005; Saitta et al., 2018). According to our observations and other 
studies (Correia, 1993; Saïd, 2002; Sedlar et al., 2018), and even 
though our results did not permit to totally exclude the climate as 
a significant driver, we suggest that this currently high diversified 
Corsican landscape is mainly due to millennia of traditional man-
agement practices, in particular pasture. However, the abandon-
ment of these traditional human activities observed since a few 
decades (Mouillot et al., 2005), adding to the increase in invasive 
species due to international exchanges (Traveset et  al., 2008), 
could probably (1) promote future forest rather than maquis 
expansion, (2) induce a loss of biodiversity (Médail and Verlaque, 
1997; Saïd, 2002) and (3) increase the fuel availability. Combined 
with the dryer climate predicted for the next decades due to global 
warming (Giannakopoulos et  al., 2009; Sheffield and Wood, 
2008), we can expect a strong increase in fire frequency and 
intensity for the next decades, similar to those from the early 
Holocene, despite the fire suppression efforts (Lahaye et  al., 
2014). This fire-prone climate adding to the fuel increase threat-
ens the important Corsican plant diversity.

Conclusion
A high-resolution analysis of charcoal, pollen and fungal remains 
in lacustrine sediments from the Lake Bastani permitted to recon-
struct precisely fire history, land cover changes and land-use 
dynamics of a representative region of Corsica and the Mediter-
ranean basin. Since 11,000 cal. BP, vegetation has been dense and 
dominated by Pinus with a low diversity, in particular for tree 
species. The dry summer conditions have induced intensive and 
frequent fires. The numerous occurrences of fire during the mil-
lennia contributed to opening the environment with the develop-
ment of Erica heather until 7500 cal. BP. Then, the decrease in 
fire events induced a closure of the forest by the colonization of 
mixed oak forests. From 5000 cal. BP, humans seem to have been 
the main driver of vegetation dynamics and fire occurrences by 
deforesting and developing crops, and pastures, using fire. These 
changes are supported by changes in the charcoal morphotypes, 
and agree with many Mediterranean studies, attesting again the 
potential of the Bastani Lake to reflect global changes for the 
Mediterranean region. Thereby, it is placed in the lineage of other 
high-elevation Corsican lakes (e.g. Lake Creno, Reille et  al., 
1999), which reflect at least the whole island history. Moreover, 
we have observed many similarities with other Mediterranean 
sites (e.g. the early Holocene characterized by many fires, first 
human impacts on fires around 7500 cal. BP that promoted the 
expansion of Quercus ilex .  .  .), in particular in Sardinia (Beffa 
et al., 2016; Morelli and Francalacci, 2000) and Tuscany (Colom-
baroli et al., 2008; Finsinger et al., 2010; Vannière et al., 2008). 
This illustrates a global trend that probably occurred on the entire 
northern part of the Mediterranean basin.

Based on the present palaeoecological record, we suggest that 
climate and natural fires were the main factors shaping the land-
scape before 5000 cal. BP. However, the extraordinary diversity 
of herbs, shrubs and trees in the current Corsican landscape is 
mainly due to human practices, in particular since the Bronze Age 
(3500 cal. BP), as they promoted ecosystem diversity and niche 
availability (e.g. Colombaroli et al., 2008; Connor et al., 2019). 
We currently assist to a decrease in pastoral activities and the land 
abandonment associated with it (Correia, 1993; Mouillot et  al., 
2005; San Roman Sanz et al., 2013), which increases fuel avail-
ability. Moreover, the increase in human density could increase 
the fire hazard (Lahaye et al., 2018, 2014). Adding to the global 
warming and the dryer climate associated to it, the next decades 
should be characterized by an increase in fire frequency and 
intensity. These changes could affect the plant diversity of Cor-
sica, such as predicted for European forests, from the temperate to 
the southern Mediterranean region (Pausas and Ribeiro, 2017; 
Pausas et al., 2009; Rundel et al., 2013).

One next step would be to model these past fire regimes and 
past vegetation in order to gain control of the underlying mecha-
nisms. For this reason, we have to work on ecosystem manage-
ment based on vegetation and fire relationships. To do so, we 
urgently need to continue investigation on the vegetation biodi-
versity dynamics associated with the fire and human activity 
dynamics in this region, in order to avoid human and economic 
damages and irrecoverable biodiversity losses within the near 
future.
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