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BIRD MIGRATION ABSTRACT. — It is assumed that trade-offs between the costs of energy-efficient flight during

Cigg}ﬁfﬁg;ggﬁ% migration and the costs of manoeuvrability cause wing shape to vary among birds that dlffer in
INSULAR SYNDROME migratory status. Migrants generally have more pointed wings than more sedentary species or
MORPHOLOGY populations. Here, we compare wing morphology between two closely related, allopatric pas-
NICHE EXPANSION serine species, the migratory citril finch (Carduelis [citrinella] citrinella) and the sedentary
WING SHAPE Corsican finch (Carduelis [citrinella] corsicanus), drawing on morphometric measurements
from museum specimens. In line with the general expectation, we show that the migratory citril
finch has longer, more pointed wings than the sedentary island form. However, this morphologi-
cal divergence may not have resulted from selection on migration-related wing characteristics
alone, but also from selection towards rounder wings (increased manoeuvrability) in the island
form that inhabits a more densely vegetated terrain than its mainland counterpart. We discuss
the roles of habitat quality and niche exploitation in shaping wing morphological differences
between island and mainland species.
INTRODUCTION elis [citrinella] (Pasquet & Thibault 1997, Sangster et al.

The design of the avian wing constitutes a trade-off
between various selection pressures that act on its aerody-
namic and mechanical properties (Norberg 1990, Videler
2006). The evolution of wing size and shape is affected
by the energy demands of migration, by take-off ability in
response to predator attacks and by the density of obsta-
cles that constrain flight manoeuvrability (Monkkonen
1995, Lockwood et al. 1998, Swaddle & Lockwood
2003). One of the common generalizations is that birds
which migrate over longer distances have more pointed
wings (i.e. longer distal and shorter proximal primaries
and a wing tip positioned closer to the leading edge of the
wing) than less migratory birds (also known as “See-
bohm’s rule”; Seebohm 1901, Niethammer 1937, Monk-
konen 1995, Fitzpatrick 1998, Calmaestra & Moreno
2001), because pointed wings enable a more energy-effi-
cient flight (Norberg 1990, Videler 2006, Bowlin &
Wikelski 2008). This principle of wing shape variation is
evident at the interspecific level (e.g. Tiainen 1985, Win-
kler & Leisler 1992, Monkkonen 1995, Keast 1996) and
has been established in several intraspecific studies com-
paring wing shape of differentially migrating individuals
within and among populations (e.g. Mulvihill & Chandler
1990, 1991, Wiedenfeld 1991, Carrascal et al. 1994,
Copete et al. 1999, Pérez-Tris et al. 1999, Pérez-Tris &
Telleria 2001, Fiedler 2005, Seki et al. 2007).

The citril finch (Carduelis [citrinella] citrinella) and
the Corsican finch (Carduelis [citrinella] corsicanus) are
two closely related members of the super-species Cardu-

2002, Forschler & Kalko 2007) that differ considerably in
their migratory behavior (Cramp & Perrins 1994). The
Corsican finch is restricted to perform small-scale altitu-
dinal movements within its Mediterranean island habitat
(Thibault & Bonaccorsi 1999), whereas the citril finch is
aregular, short- to medium-distance migrant in most parts
of its northern breeding range (Alps, Black Forest) and
spends the winter in mountainous habitats of central
France and north-eastern Spain (Cramp & Perrins 1994).
Both subspecies also differ in their habitat selection. The
Corsican finch has expanded its niche on the Mediterra-
nean islands into densely vegetated scrublands, especially
maquis dominated by Erica arborea (Blondel et al. 1988,
Forschler & Kalko 2006a). In contrast, the habitat of the
citril finch is restricted to semi-open coniferous forests in
subalpine and montane zones with only little undergrowth
(Forschler & Kalko 2006a).

In this study, we compare wing morphology between
the citril and the Corsican finch, drawing on measure-
ments from museum specimens. There are three, not
mutually exclusive reasons for assuming that Central
European citril finches should have longer, more pointed
wings than their Mediterranean congeners. First, an
increase in the proportion of migrants during the postgla-
cial range expansion of this species could have resulted in
selection of birds with more pointed wings as part of the
migratory syndrome (Dingle 2006). Secondly, we may
expect the Mediterranean form to show more rounded
wings as an adaptation to increased manoeuvrability
demands in their more densely vegetated maquis habitat.
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Third, wing shape might be related to differences in
resource allocation strategies, with longer flight distances
predicted for the citril finch that exploits more patchy
habitats (Forschler & Kalko 2006b, Forschler & Sieben-
rock 2007) and is prone to undertake longer facultative
movements in response to adverse, northern temperate
weather conditions (Forschler 2001).

MATERIAL AND METHODS

We measured a total of 21 well-preserved museum speci-
mens sampled at the beginning of the 20" century in the Vosges
mountains and the Black Forest (10 individuals), and on Corsica
(11 individuals). Museum specimens stemmed from three col-
lections in Germany: Zoologische Staatssammlung Miinchen
(Munich), Zoologisches Museum der Humboldt Universitét
(Berlin) and Naturkundemuseum Rosenstein (Stuttgart). Since
the overall number of available skins was considerably limited,
we confined our analysis to adult male individuals to render
comparable wing measurements.

We measured the distance between the carpal joint and the
tip of the nine larger primaries on the folded wing, following the
definitions given in Lockwood et al. (1998). Primary distances
are defined as the length of the line between the wingtip and the
relevant primary feather tip projected onto a line parallel to the
wing chord on a folded wing in which all primaries are approxi-
mately parallel (Lockwood et al. 1998). All measurements were
carried out by the same person.

For comparing wing shape among subspecies, we selected

(@)

Winglength (mm)

Primary

three conventional indices of “pointedness”, which control for
interspecific difference in absolute feather length (reviewed in
Lockwood et al. 1998, see Table II): (1) Kipp’s index, (2) Holyn-
ski’s index, (3) Busse’s index (Kipp 1959, Holynski 1965, Busse
1967, 1986). Primary 10 was excluded from calculations due to
its extremely small size.

RESULTS

We found significant differences in wing size and
shape between mainland citril finches and insular Corsi-
can finches. Mean values of primary distances and wing
length differed significantly between subspecies (Table I,
Fig. 1).

Both subspecies differed significantly in three indices
of wing pointedness, with the citril finch generally show-
ing a more pointed wing tip than the Corsican finch
(Table II, Fig. 1). Indices of wing pointedness were sig-
nificantly positively correlated with total wing length
across subspecies (Spearman’s rank correlations, Kipp’s
index, rg = 0.56, p < 0.05, Holynski’s index, rg = 0.45,
p <0.05, Busse’s index, rs = 0.60, p < 0.01), indicating
that individuals with longer wings tend to have more
pointed wings (Fig. 2).

DISCUSSION

Migratoriness is generally associated with a tendency

(b)

20 —f

Primary distance (mm)

Primary

Fig. 1. — Graphical representation of differences in wing size and shape between adult male citril finches (solid lines) and Corsican
finches (broken lines) as derived from measurements of the nine larger primaries (P1 to P9, proximal to distal) on folded wings: a,
Wing diagram showing differences between wing length and primary distances. The dotted line gives the average total wing length for
the respective subspecies. b, Size-independent, mean primary distances. Among-species differences in primary distance are significant
for primaries P1 to P6 (see Table I).
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Table I. — Mean values (+ SD, in mm) of primary distances (defined as the length of the line between the wingtip and the relevant pri-
mary feather tip projected onto a line parallel to the wing chord, cf. Lockwood et al. 1998) and wing length measured on folded wings
of 10 citril finches (Carduelis [citrinella] citrinella) and 11 Corsican finches (Carduelis [citrinella) corsicanus). Statistic and level of
significance of the Wilcoxon 2-sample Test.

C.c.citrinella C. c. corsicanus Wilcoxon Test

P1 22.30+0.79 19.81 +£1.08 Z=3.61;p=0.0003
P2 20.00 +1.05 17.77+1.25 Z=3.18;p=0.0013
P3 17.75+0.79 1545+ 131 Z=328;p=0.0010
P4 1505+1.34 1272 +1.17 Z=3.13;p=0.0018
P5 1040 +£2.16 823+1.21 Z=2.60;p=0.0092
P6 323+£275 1.40 £0.60 Z=2284;p=0.0045
P7 0.44 £ 056 043 +044 Z=-036;p=0.7176
P8 0.13+0.22 0.07+0.17 Z=0.61;p=0.5083
P9 1.54+£0.80 0.99+0.77 Z=1.53;p=0.1265
Wing length 76.80 +1.27 72.59 £2.21 Z=3.57;p=0.0004

Table II. — Differences between wing-tip shape indices as calculated from measures based on folded wings of 10 citril finches (Cardu-
elis [citrinella] citrinella) and 11 Corsican finches (Carduelis [citrinella] corsicanus). Median values, statistic and level of significance

of the Wilcoxon 2-sample Test.

Source C.c.citrinella C.c. corsicanus Wilcoxon Test
Kipp’s Index Kipp 1959 2942 2745 Z=222;p=0.0264
Holynski’s Index Holynski 1965 109.05 103.62 Z=2.8;p=0.0221
Busse’s Index Busse 1967 114.99 104.05 Z=2.29;p=0.0049
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Fig. 2. — Correlation between wing pointedness as expressed by
Busse’s index (cf Busse 1967, 1986) and total wing length of
adult male citril finches (black dotts) and Corsican finches (open
circles).

towards elongated and pointed wings. Our result shows
that the non-migratory Corsican finch has shorter, more
rounded wings than its migratory mainland counterpart,
the citril finch. This confirms the general pattern of wing-
shape variation among populations of different migratory

status (e.g. Pérez-Tris & Telleria 2001, Fiedler 2005, Seki
et al.2007).

Wing pointedness may have evolved in the citril finch
during its postglacial range expansion into northern tem-
perate, seasonal environments, with selection acting on a
suit of co-adapted migratory traits or a ‘migratory syn-
drome’ (Dingle 2006, van Noordwijk et al. 2006), includ-
ing wing morphology. Recent studies on house finches
Carpodacus mexicanus have shown that morphological
differentiation of the wing-tip shape among populations
with different migratory habits can take place even on a
microevolutionary time scale (Egbert & Belthoff 2003).
Consequently, the observed morphological divergence
between the migratory citril and non-migratory Corsican
finch could be explained solely by a microevolutionary
process within the migratory population.

However, seasonal migration may not be the only rea-
son for the observed pattern. The morphological diver-
gence among subspecies may have also arisen from diver-
gent effects of habitat quality and niche occupancy (e.g.
Leisler & Winkler 1991), because both subspecies inhabit
contrasting environments that impose different selection
pressures on wing morphology. In contrast to the main-
land citril finch, the insular Corsican finch has expanded
its niche into densely vegetated maquis dominated by
Erica arborea (Blondel et al. 1988, Forschler & Kalko
2006a). The rounder wings of the Corsican finch may thus
reflect an adaptation to the need for improved manoeu-
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vrability in a densely vegetated habitat, making individu-
als less susceptible to predators (e.g. Pérez-Tris & Telleria
2001). Furthermore, an energy-efficient wing shape may
not only be favorable during long-distance seasonal
migrations, but also during daily movements between
habitat patches. Corsican and citril finches differ in the
mean distance between their nesting and foraging
grounds, with significantly shorter distances covered by
the Corsican finch (Forschler & Kalko 2006a, b). Thus,
besides selection for wing pointedness within migratory
citril finch populations, differences in resource allocation
and exploitation on the breeding grounds may have rein-
forced the morphological divergence between both spe-
cies. This is further supported by among-species differ-
ences in morphological characteristics associated with
feeding and foraging performance (Forschler & Sieben-
rock 2007). The Corsican finch has proportionally a
smaller bill and shorter legs, toes and claws than the citril
finch, suggesting that overall morphology has been adapt-
ed to suit local habitat conditions (Forschler & Kalko
20064, b).

To conclude, wing pointedness in relation to migratori-
ness may not have been the only target of selection leading
to this morphological divergence. The directionality and
relative strength of the potential selective forces remain
ambiguous. Given that patterns of wing-shape variation
are not always related to the extent of migration (e.g. Mul-
vihill & Chandler 1991), further research is needed to dis-
tinguish between morphological adaptations that are asso-
ciated with the demands of seasonal migration and those
resulting from habitat heterogeneity (e.g. Clegg & Owens
2002, Scott et al. 2003, Sacher et al. 2006, Seki et al.
2007). Rounder wings are commonly found in bird popu-
lations inhabiting island habitats, representing one facet of
the so-called ‘insular syndrome’ (Blondel 2000). At the
macroevolutionary scale, some bird taxa colonizing
islands even became completely flightless, presumably as
a consequence of reduced predation. But exceptions from
this rule (e.g. Acrocephalus warbler species, see Komdeur
et al. 2004) show that it is far from clear why birds inhab-
iting islands should differ in wing morphology from
(migratory) mainland congeners. Fossil records provide
evidence that citril finch forms were present on Corsica
during the late Pleistocene (Alcover et al. 1992), yet it is
unknown whether these represent ancestors of today’s
Corsican finch or whether the divergence took place on a
microevolutionary time scale during later periods. The
evolutionary history of both the Corsican and the citril
finch is still uncertain (Pasquet & Thibault 1997, Sangster
2002, Forschler & Kalko 2007). Molecular genetic work
may clarify this problem. Further questions that remain to
be resolved are whether wing morphology and migration
behavior can evolve independently and whether the insu-
lar (Blondel 2000) and the migratory syndrome (Dingle
2006, van Noordwijk et al. 2006) represent extremes along
a phenotypic continuum.
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